

Form:	Form Number	EXC-01-02-02A
	Issue Number and Date	2/3/24/2022/2963
Course Syllabus		05/12/2022
	Number and Date of Revision or Modification	
	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	06

1.	Course Title	Many Body Theory
2.	Course Number	0302957
3.	Credit Hours (Theory, Practical)	3
5.	Contact Hours (Theory, Practical)	0
4.	Prerequisites/ Corequisites	-
5.	Program Title	PhD
6.	Program Code	021
7.	School/ Center	Faculty of Science
8.	Department	Physics
9.	Course Level	Graduate
10.	Year of Study and Semester (s)	
11.	Other Department(s) Involved in	
11.	Teaching the Course	
12.	Main Learning Language	English
13.	Learning Types	□Face to face learning □Blended □Fully online
14.	Online Platforms(s)	□Moodle □Microsoft Teams
15.	Issuing Date	
16.	Revision Date	

17. Course Coordinator:

Name:	Contact hours:
Office number:	Phone number:
Email:	

18. Other Instructors:

Name:
Office number:
Phone number:
Email:
Contact hours:
Name:
Office number:
Phone number:
Email:
Contact hours:

19. Course Description:

As stated in the approved study plan.

- **20. Program Intended Learning Outcomes:** (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)
 - 1. **SO1:** to be able to demonstrate an advanced and comprehensive understanding of core physics concepts and specialized knowledge in a chosen field of research, contributing to the frontier of physics.
 - 2. **SO2:** to be able to develop and execute independent, original research projects that address complex scientific problems, advancing theoretical and experimental physics.
 - 3. **SO3:** to be able to apply advanced mathematical and computational techniques to analyze complex physical phenomena and critically evaluate scientific literature and experimental results.
 - 4. **SO4:** to be able to effectively communicate complex physics concepts, research findings, and their significance through academic writing, presentations, and public outreach.
 - 5. **SO5:** to be able to adhere to high ethical standards and professional responsibility in conducting research, including data integrity, ethical treatment of subjects, and the responsible use of resources.
 - 6. **SO6:** to be able to demonstrate leadership and collaborative skills within multidisciplinary teams, contributing to the development of new scientific knowledge and promoting knowledge-sharing across disciplines.
 - 7. **SO7:** to be able to cultivate the ability to adapt to new scientific advancements and continuously engage in professional development to contribute to innovation in the field of physics.

الجامعة الاردنية

8. SO8: to be able to master experimental and computational techniques relevant to the research field, demonstrating competency in operating and developing specialized physics instrumentation and software

- **21. Course Intended Learning Outcomes:** (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)
 - 1. Explain the foundational principles of many-body quantum mechanics, including second quantization and operator formalism.
 - 2. Demonstrate the use of Green's functions to analyze interacting quantum systems.
 - 3. Apply diagrammatic perturbation theory to calculate physical properties of many-body systems.
 - 4. Analyze the behavior of fermionic and bosonic systems using advanced quantum mechanical techniques.
 - 5. Explain the concept of collective excitations and quasiparticles in interacting systems.
 - 6. Solve problems related to superconductivity using the BCS theory and its extensions.
 - 7. Apply many-body theory to analyze physical systems such as electron gases and condensed matter systems.
 - 8. Use advanced mathematical techniques, such as Fourier transforms and contour integration, to solve problems in quantum many-body theory.
 - 9. Explain the role of symmetries and conservation laws in simplifying many-body quantum systems.

Course	The learning levels to be achieved										
ILOs	Remembering	Understanding	Applying	Analysing	evaluating	Creating					
1	X	X									
2		X									
3	Х	X	X								
4				X							
5				Х							
6			Х	Х							
7			Х	Х							
8			Х	Х							
9		Х									

27. The matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program:

Program /	ILO (1)	ILO (2)	ILO (3)	ILO (4)	ILO (5)	ILO(6)	ILO(7)	ILO(8)
ILOs		ILO(2)	ILO(3)	ILO (4)	ILO(3)	ILO(0)	ILO(7)	ILO(0)
ILOS								
Course								
ILOs								
1	Х							
2	X		х					
3	X		X					
4	х		X					
5	X		X					
6	X		X					
7	X	X	X					
8			X					
9	X		X					
10		Х		X			X	

2[°]. Topic Outline and Schedule:

Week	Lecture	Topic	ILO/s Linked to the Topic	Learning Types (Face to Face/ Blended/ Fully Online)	Platform Used	Synchronous / Asynchronous Lecturing	Evaluation Methods	Learning Resources
1	1	Introduction to Many-Body Theory: Overview	CI L O 1, CI L O 1	Face- to- Face	Class room	Synchr onous		Fetter & Walecka (Ch. 1)

الجامعة الاردنية

	2	Review QM mechanics	CI L O	Face- to- Face	Class room	Synchr onous	Supplementar y
2	1	Pictures and representations	1 CI L O	Face- to- Face	Class room	Synchr onous	Supplementar y
	2	Second Quantization	1 CI L O	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 1)
3	1	Field Operators and Creation/Annihilation Operators	1 CI L 0 1	Blend ed	LMS (e.g., Moo dle)	Synchr onous	Fetter & Walecka (Ch. 1)
	2	Field Operators and Creation/Annihilation Operators	CI L O 1	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 1)
4	1	Non-Interacting Many-Particle Systems: Fermions	CI L O 4	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 2)
	2	Non-Interacting Many-Particle Systems: Bosons	CI L O 4	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 2)
5	1	Density Operators and Ensemble Averages	CI L O 1	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 2)
	2	Green's Functions: Time-Ordered, Retarded, and Advanced	CI L O 2	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 3)
6	1	Green's Functions: Time-Ordered, Retarded, and Advanced	CI L O 2	Blend ed	LMS	Synchr onous	Fetter & Walecka (Ch. 3)
	2	Equations of Motion for Green's Functions	CI L O 2	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 3)
7	1	Diagrammatic Perturbation Theory: Feynman Diagrams	CI L O 3	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 4)
	2	Diagrammatic Perturbation Theory: Feynman Diagrams	CI L	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 4)

الجامعة الاردنية

			0				
8	1	Self-Energy and Dyson's Equation	3 CI L O 3	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 4)
	2	Midterm	-				
9	1	Electron Gas	CI L O 7	Blend ed	LMS	Async hronou s	Fetter & Walecka (Ch. 5)
	2	Quasiparticles	CI L O 5	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 5)
1 0	1	Linear Response Theory	CI L O 5,	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 5)
	2	Bose-Einstein Condensation and Superfluidity	CI L O 9	Blend ed	LMS	Synchr onous	Fetter & Walecka (Ch. 6)
1 1	1	Fermion Pairing and BCS Theory	CI L O 6	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 7)
	2	Collective Excitations: Phonons	CI L O 5	Blend ed	LMS	Async hronou s	Fetter & Walecka (Ch. 7)
1 2	1	Collective Excitations: Plasmons	CI L O 5	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 7)
	2	Symmetries and Conservation Laws in Many- Body Systems	CI L O 9	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 8)
1 3	1	Applications in Condensed Matter Physics: Band Structures	CI L O 7	Blend ed	LMS	Synchr onous	Fetter & Walecka (Ch. 8)
	2	Advanced Techniques: Fourier Transform Methods in Many-Body Theory, contour integration	CI L O 8	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 9)
1 4	1	Advanced Techniques: Fourier Transform Methods in Many-Body Theory, contour integration	CI L O 8	Face- to- Face	Class room	Synchr onous	Fetter & Walecka (Ch. 9)

2	Final Exam			

24. Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	ILO/s Linked to the Evaluation activity	Period (Week)	Platform
Midterm	30	CH1-CH4	1-4	8 th week	Face
HW	30	All	All	3^{rd} , 6^{th} , 9^{th} weeks	Face
Final	40	All	All	Final week	Face

2°. Course Requirements:

(e.g.: students should have a computer, internet connection, webcam, account on a specific software/platform...etc.):

27. Course Policies:

- A- Attendance policies:
- B- Absences from exams and submitting assignments on time:
- C- Health and safety procedures:
- D- Honesty policy regarding cheating, plagiarism, misbehavior:
- E- Grading policy:
- F- Available university services that support achievement in the course:

2^v. References:

A- Required book(s), assigned reading and audio-visuals:

"Quantum Theory of Many-Particle Systems" by Alexander L. Fetter and John D. Walecka

Recommended books, materials, and media:

"Many-Particle Physics" by Gerald D. Mahan

2[^]. Additional information:

Name of the Instructor or the Course Coordinator:	Signature:	Date:
Name of the Head of Quality Assurance Committee/ Department	Signature:	Date:
Name of the Head of Department	Signature:	Date:
Name of the Head of Quality Assurance Committee/ School or Center	Signature:	Date:
Name of the Dean or the Director	Signature:	Date: